/* * Copyright (c) 2000, 2008, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.awt; import java.awt.event.FocusEvent; import java.awt.event.KeyEvent; import java.awt.event.WindowEvent; import java.awt.peer.ComponentPeer; import java.awt.peer.LightweightPeer; import java.lang.ref.WeakReference; import java.util.LinkedList; import java.util.Iterator; import java.util.ListIterator; import java.util.Set; import sun.util.logging.PlatformLogger; import sun.awt.AppContext; import sun.awt.SunToolkit; import sun.awt.AWTAccessor; import sun.awt.CausedFocusEvent; /** * The default KeyboardFocusManager for AWT applications. Focus traversal is * done in response to a Component's focus traversal keys, and using a * Container's FocusTraversalPolicy. *
* Please see
*
* How to Use the Focus Subsystem,
* a section in The Java Tutorial, and the
* Focus Specification
* for more information.
*
* @author David Mendenhall
*
* @see FocusTraversalPolicy
* @see Component#setFocusTraversalKeys
* @see Component#getFocusTraversalKeys
* @since 1.4
*/
public class DefaultKeyboardFocusManager extends KeyboardFocusManager {
private static final PlatformLogger focusLog = PlatformLogger.getLogger("java.awt.focus.DefaultKeyboardFocusManager");
// null weak references to not create too many objects
private static final WeakReference
* In all cases, this method returns false
, then the AWT event
* dispatcher will attempt to dispatch the event itself.
*
* @param e the AWTEvent to be dispatched
* @return true
if this method dispatched the event;
* false
otherwise
*/
public boolean dispatchEvent(AWTEvent e) {
if (focusLog.isLoggable(PlatformLogger.FINE) && (e instanceof WindowEvent || e instanceof FocusEvent)) focusLog.fine("" + e);
switch (e.getID()) {
case WindowEvent.WINDOW_GAINED_FOCUS: {
WindowEvent we = (WindowEvent)e;
Window oldFocusedWindow = getGlobalFocusedWindow();
Window newFocusedWindow = we.getWindow();
if (newFocusedWindow == oldFocusedWindow) {
break;
}
if (!(newFocusedWindow.isFocusableWindow()
&& newFocusedWindow.isVisible()
&& newFocusedWindow.isDisplayable()))
{
// we can not accept focus on such window, so reject it.
restoreFocus(we);
break;
}
// If there exists a current focused window, then notify it
// that it has lost focus.
if (oldFocusedWindow != null) {
boolean isEventDispatched =
sendMessage(oldFocusedWindow,
new WindowEvent(oldFocusedWindow,
WindowEvent.WINDOW_LOST_FOCUS,
newFocusedWindow));
// Failed to dispatch, clear by ourselfves
if (!isEventDispatched) {
setGlobalFocusOwner(null);
setGlobalFocusedWindow(null);
}
}
// Because the native libraries do not post WINDOW_ACTIVATED
// events, we need to synthesize one if the active Window
// changed.
Window newActiveWindow =
getOwningFrameDialog(newFocusedWindow);
Window currentActiveWindow = getGlobalActiveWindow();
if (newActiveWindow != currentActiveWindow) {
sendMessage(newActiveWindow,
new WindowEvent(newActiveWindow,
WindowEvent.WINDOW_ACTIVATED,
currentActiveWindow));
if (newActiveWindow != getGlobalActiveWindow()) {
// Activation change was rejected. Unlikely, but
// possible.
restoreFocus(we);
break;
}
}
setGlobalFocusedWindow(newFocusedWindow);
if (newFocusedWindow != getGlobalFocusedWindow()) {
// Focus change was rejected. Will happen if
// newFocusedWindow is not a focusable Window.
restoreFocus(we);
break;
}
// Restore focus to the Component which last held it. We do
// this here so that client code can override our choice in
// a WINDOW_GAINED_FOCUS handler.
//
// Make sure that the focus change request doesn't change the
// focused Window in case we are no longer the focused Window
// when the request is handled.
if (inSendMessage == 0) {
// Identify which Component should initially gain focus
// in the Window.
//
// * If we're in SendMessage, then this is a synthetic
// WINDOW_GAINED_FOCUS message which was generated by a
// the FOCUS_GAINED handler. Allow the Component to
// which the FOCUS_GAINED message was targeted to
// receive the focus.
// * Otherwise, look up the correct Component here.
// We don't use Window.getMostRecentFocusOwner because
// window is focused now and 'null' will be returned
// Calculating of most recent focus owner and focus
// request should be synchronized on KeyboardFocusManager.class
// to prevent from thread race when user will request
// focus between calculation and our request.
// But if focus transfer is synchronous, this synchronization
// may cause deadlock, thus we don't synchronize this block.
Component toFocus = KeyboardFocusManager.
getMostRecentFocusOwner(newFocusedWindow);
if ((toFocus == null) &&
newFocusedWindow.isFocusableWindow())
{
toFocus = newFocusedWindow.getFocusTraversalPolicy().
getInitialComponent(newFocusedWindow);
}
Component tempLost = null;
synchronized(KeyboardFocusManager.class) {
tempLost = newFocusedWindow.setTemporaryLostComponent(null);
}
// The component which last has the focus when this window was focused
// should receive focus first
if (focusLog.isLoggable(PlatformLogger.FINER)) {
focusLog.finer("tempLost {0}, toFocus {1}",
tempLost, toFocus);
}
if (tempLost != null) {
tempLost.requestFocusInWindow(CausedFocusEvent.Cause.ACTIVATION);
}
if (toFocus != null && toFocus != tempLost) {
// If there is a component which requested focus when this window
// was inactive it expects to receive focus after activation.
toFocus.requestFocusInWindow(CausedFocusEvent.Cause.ACTIVATION);
}
}
Window realOppositeWindow = this.realOppositeWindowWR.get();
if (realOppositeWindow != we.getOppositeWindow()) {
we = new WindowEvent(newFocusedWindow,
WindowEvent.WINDOW_GAINED_FOCUS,
realOppositeWindow);
}
return typeAheadAssertions(newFocusedWindow, we);
}
case WindowEvent.WINDOW_ACTIVATED: {
WindowEvent we = (WindowEvent)e;
Window oldActiveWindow = getGlobalActiveWindow();
Window newActiveWindow = we.getWindow();
if (oldActiveWindow == newActiveWindow) {
break;
}
// If there exists a current active window, then notify it that
// it has lost activation.
if (oldActiveWindow != null) {
boolean isEventDispatched =
sendMessage(oldActiveWindow,
new WindowEvent(oldActiveWindow,
WindowEvent.WINDOW_DEACTIVATED,
newActiveWindow));
// Failed to dispatch, clear by ourselfves
if (!isEventDispatched) {
setGlobalActiveWindow(null);
}
if (getGlobalActiveWindow() != null) {
// Activation change was rejected. Unlikely, but
// possible.
break;
}
}
setGlobalActiveWindow(newActiveWindow);
if (newActiveWindow != getGlobalActiveWindow()) {
// Activation change was rejected. Unlikely, but
// possible.
break;
}
return typeAheadAssertions(newActiveWindow, we);
}
case FocusEvent.FOCUS_GAINED: {
FocusEvent fe = (FocusEvent)e;
CausedFocusEvent.Cause cause = (fe instanceof CausedFocusEvent) ?
((CausedFocusEvent)fe).getCause() : CausedFocusEvent.Cause.UNKNOWN;
Component oldFocusOwner = getGlobalFocusOwner();
Component newFocusOwner = fe.getComponent();
if (oldFocusOwner == newFocusOwner) {
if (focusLog.isLoggable(PlatformLogger.FINE)) {
focusLog.fine("Skipping {0} because focus owner is the same", e);
}
// We can't just drop the event - there could be
// type-ahead markers associated with it.
dequeueKeyEvents(-1, newFocusOwner);
break;
}
// If there exists a current focus owner, then notify it that
// it has lost focus.
if (oldFocusOwner != null) {
boolean isEventDispatched =
sendMessage(oldFocusOwner,
new CausedFocusEvent(oldFocusOwner,
FocusEvent.FOCUS_LOST,
fe.isTemporary(),
newFocusOwner, cause));
// Failed to dispatch, clear by ourselfves
if (!isEventDispatched) {
setGlobalFocusOwner(null);
if (!fe.isTemporary()) {
setGlobalPermanentFocusOwner(null);
}
}
}
// Because the native windowing system has a different notion
// of the current focus and activation states, it is possible
// that a Component outside of the focused Window receives a
// FOCUS_GAINED event. We synthesize a WINDOW_GAINED_FOCUS
// event in that case.
final Window newFocusedWindow = SunToolkit.getContainingWindow(newFocusOwner);
final Window currentFocusedWindow = getGlobalFocusedWindow();
if (newFocusedWindow != null &&
newFocusedWindow != currentFocusedWindow)
{
sendMessage(newFocusedWindow,
new WindowEvent(newFocusedWindow,
WindowEvent.WINDOW_GAINED_FOCUS,
currentFocusedWindow));
if (newFocusedWindow != getGlobalFocusedWindow()) {
// Focus change was rejected. Will happen if
// newFocusedWindow is not a focusable Window.
// Need to recover type-ahead, but don't bother
// restoring focus. That was done by the
// WINDOW_GAINED_FOCUS handler
dequeueKeyEvents(-1, newFocusOwner);
break;
}
}
if (!(newFocusOwner.isFocusable() && newFocusOwner.isShowing() &&
// Refuse focus on a disabled component if the focus event
// isn't of UNKNOWN reason (i.e. not a result of a direct request
// but traversal, activation or system generated).
(newFocusOwner.isEnabled() || cause.equals(CausedFocusEvent.Cause.UNKNOWN))))
{
// we should not accept focus on such component, so reject it.
dequeueKeyEvents(-1, newFocusOwner);
if (KeyboardFocusManager.isAutoFocusTransferEnabled()) {
// If FOCUS_GAINED is for a disposed component (however
// it shouldn't happen) its toplevel parent is null. In this
// case we have to try to restore focus in the current focused
// window (for the details: 6607170).
if (newFocusedWindow == null) {
restoreFocus(fe, currentFocusedWindow);
} else {
restoreFocus(fe, newFocusedWindow);
}
}
break;
}
setGlobalFocusOwner(newFocusOwner);
if (newFocusOwner != getGlobalFocusOwner()) {
// Focus change was rejected. Will happen if
// newFocusOwner is not focus traversable.
dequeueKeyEvents(-1, newFocusOwner);
if (KeyboardFocusManager.isAutoFocusTransferEnabled()) {
restoreFocus(fe, (Window)newFocusedWindow);
}
break;
}
if (!fe.isTemporary()) {
setGlobalPermanentFocusOwner(newFocusOwner);
if (newFocusOwner != getGlobalPermanentFocusOwner()) {
// Focus change was rejected. Unlikely, but possible.
dequeueKeyEvents(-1, newFocusOwner);
if (KeyboardFocusManager.isAutoFocusTransferEnabled()) {
restoreFocus(fe, (Window)newFocusedWindow);
}
break;
}
}
setNativeFocusOwner(getHeavyweight(newFocusOwner));
Component realOppositeComponent = this.realOppositeComponentWR.get();
if (realOppositeComponent != null &&
realOppositeComponent != fe.getOppositeComponent()) {
fe = new CausedFocusEvent(newFocusOwner,
FocusEvent.FOCUS_GAINED,
fe.isTemporary(),
realOppositeComponent, cause);
((AWTEvent) fe).isPosted = true;
}
return typeAheadAssertions(newFocusOwner, fe);
}
case FocusEvent.FOCUS_LOST: {
FocusEvent fe = (FocusEvent)e;
Component currentFocusOwner = getGlobalFocusOwner();
if (currentFocusOwner == null) {
if (focusLog.isLoggable(PlatformLogger.FINE))
focusLog.fine("Skipping {0} because focus owner is null", e);
break;
}
// Ignore cases where a Component loses focus to itself.
// If we make a mistake because of retargeting, then the
// FOCUS_GAINED handler will correct it.
if (currentFocusOwner == fe.getOppositeComponent()) {
if (focusLog.isLoggable(PlatformLogger.FINE))
focusLog.fine("Skipping {0} because current focus owner is equal to opposite", e);
break;
}
setGlobalFocusOwner(null);
if (getGlobalFocusOwner() != null) {
// Focus change was rejected. Unlikely, but possible.
restoreFocus(currentFocusOwner, true);
break;
}
if (!fe.isTemporary()) {
setGlobalPermanentFocusOwner(null);
if (getGlobalPermanentFocusOwner() != null) {
// Focus change was rejected. Unlikely, but possible.
restoreFocus(currentFocusOwner, true);
break;
}
} else {
Window owningWindow = currentFocusOwner.getContainingWindow();
if (owningWindow != null) {
owningWindow.setTemporaryLostComponent(currentFocusOwner);
}
}
setNativeFocusOwner(null);
fe.setSource(currentFocusOwner);
realOppositeComponentWR = (fe.getOppositeComponent() != null)
? new WeakReferencedispatchEvent
if no other
* KeyEventDispatcher in the dispatcher chain dispatched the KeyEvent, or
* if no other KeyEventDispatchers are registered. If the event has not
* been consumed, its target is enabled, and the focus owner is not null,
* this method dispatches the event to its target. This method will also
* subsequently dispatch the event to all registered
* KeyEventPostProcessors. After all this operations are finished,
* the event is passed to peers for processing.
* true
, since
* DefaultKeyboardFocusManager is designed so that neither
* dispatchEvent
, nor the AWT event dispatcher, should take
* further action on the event in any situation.
*
* @param e the KeyEvent to be dispatched
* @return true
* @see Component#dispatchEvent
*/
public boolean dispatchKeyEvent(KeyEvent e) {
Component focusOwner = (((AWTEvent)e).isPosted) ? getFocusOwner() : e.getComponent();
if (focusOwner != null && focusOwner.isShowing() && focusOwner.canBeFocusOwner()) {
if (!e.isConsumed()) {
Component comp = e.getComponent();
if (comp != null && comp.isEnabled()) {
redispatchEvent(comp, e);
}
}
}
boolean stopPostProcessing = false;
java.util.List processors = getKeyEventPostProcessors();
if (processors != null) {
for (java.util.Iterator iter = processors.iterator();
!stopPostProcessing && iter.hasNext(); )
{
stopPostProcessing = (((KeyEventPostProcessor)(iter.next())).
postProcessKeyEvent(e));
}
}
if (!stopPostProcessing) {
postProcessKeyEvent(e);
}
// Allow the peer to process KeyEvent
Component source = e.getComponent();
ComponentPeer peer = source.getPeer();
if (peer == null || peer instanceof LightweightPeer) {
// if focus owner is lightweight then its native container
// processes event
Container target = source.getNativeContainer();
if (target != null) {
peer = target.getPeer();
}
}
if (peer != null) {
peer.handleEvent(e);
}
return true;
}
/**
* This method will be called by dispatchKeyEvent
. It will
* handle any unconsumed KeyEvents that map to an AWT
* MenuShortcut
by consuming the event and activating the
* shortcut.
*
* @param e the KeyEvent to post-process
* @return true
* @see #dispatchKeyEvent
* @see MenuShortcut
*/
public boolean postProcessKeyEvent(KeyEvent e) {
if (!e.isConsumed()) {
Component target = e.getComponent();
Container p = (Container)
(target instanceof Container ? target : target.getParent());
if (p != null) {
p.postProcessKeyEvent(e);
}
}
return true;
}
private void pumpApprovedKeyEvents() {
KeyEvent ke;
do {
ke = null;
synchronized (this) {
if (enqueuedKeyEvents.size() != 0) {
ke = (KeyEvent)enqueuedKeyEvents.getFirst();
if (typeAheadMarkers.size() != 0) {
TypeAheadMarker marker = (TypeAheadMarker)
typeAheadMarkers.getFirst();
// Fixed 5064013: may appears that the events have the same time
// if (ke.getWhen() >= marker.after) {
// The fix is rolled out.
if (ke.getWhen() > marker.after) {
ke = null;
}
}
if (ke != null) {
focusLog.finer("Pumping approved event {0}", ke);
enqueuedKeyEvents.removeFirst();
}
}
}
if (ke != null) {
preDispatchKeyEvent(ke);
}
} while (ke != null);
}
/**
* Dumps the list of type-ahead queue markers to stderr
*/
void dumpMarkers() {
if (focusLog.isLoggable(PlatformLogger.FINEST)) {
focusLog.finest(">>> Markers dump, time: {0}", System.currentTimeMillis());
synchronized (this) {
if (typeAheadMarkers.size() != 0) {
Iterator iter = typeAheadMarkers.iterator();
while (iter.hasNext()) {
TypeAheadMarker marker = (TypeAheadMarker)iter.next();
focusLog.finest(" {0}", marker);
}
}
}
}
}
private boolean typeAheadAssertions(Component target, AWTEvent e) {
// Clear any pending events here as well as in the FOCUS_GAINED
// handler. We need this call here in case a marker was removed in
// response to a call to dequeueKeyEvents.
pumpApprovedKeyEvents();
switch (e.getID()) {
case KeyEvent.KEY_TYPED:
case KeyEvent.KEY_PRESSED:
case KeyEvent.KEY_RELEASED: {
KeyEvent ke = (KeyEvent)e;
synchronized (this) {
if (e.isPosted && typeAheadMarkers.size() != 0) {
TypeAheadMarker marker = (TypeAheadMarker)
typeAheadMarkers.getFirst();
// Fixed 5064013: may appears that the events have the same time
// if (ke.getWhen() >= marker.after) {
// The fix is rolled out.
if (ke.getWhen() > marker.after) {
focusLog.finer("Storing event {0} because of marker {1}", ke, marker);
enqueuedKeyEvents.addLast(ke);
return true;
}
}
}
// KeyEvent was posted before focus change request
return preDispatchKeyEvent(ke);
}
case FocusEvent.FOCUS_GAINED:
focusLog.finest("Markers before FOCUS_GAINED on {0}", target);
dumpMarkers();
// Search the marker list for the first marker tied to
// the Component which just gained focus. Then remove
// that marker, any markers which immediately follow
// and are tied to the same component, and all markers
// that preceed it. This handles the case where
// multiple focus requests were made for the same
// Component in a row and when we lost some of the
// earlier requests. Since FOCUS_GAINED events will
// not be generated for these additional requests, we
// need to clear those markers too.
synchronized (this) {
boolean found = false;
if (hasMarker(target)) {
for (Iterator iter = typeAheadMarkers.iterator();
iter.hasNext(); )
{
if (((TypeAheadMarker)iter.next()).untilFocused ==
target)
{
found = true;
} else if (found) {
break;
}
iter.remove();
}
} else {
// Exception condition - event without marker
focusLog.finer("Event without marker {0}", e);
}
}
focusLog.finest("Markers after FOCUS_GAINED");
dumpMarkers();
redispatchEvent(target, e);
// Now, dispatch any pending KeyEvents which have been
// released because of the FOCUS_GAINED event so that we don't
// have to wait for another event to be posted to the queue.
pumpApprovedKeyEvents();
return true;
default:
redispatchEvent(target, e);
return true;
}
}
/**
* Returns true if there are some marker associated with component comp
* in a markers' queue
* @since 1.5
*/
private boolean hasMarker(Component comp) {
for (Iterator iter = typeAheadMarkers.iterator(); iter.hasNext(); ) {
if (((TypeAheadMarker)iter.next()).untilFocused == comp) {
return true;
}
}
return false;
}
/**
* Clears markers queue
* @since 1.5
*/
void clearMarkers() {
synchronized(this) {
typeAheadMarkers.clear();
}
}
private boolean preDispatchKeyEvent(KeyEvent ke) {
if (((AWTEvent) ke).isPosted) {
Component focusOwner = getFocusOwner();
ke.setSource(((focusOwner != null) ? focusOwner : getFocusedWindow()));
}
if (ke.getSource() == null) {
return true;
}
// Explicitly set the current event and most recent timestamp here in
// addition to the call in Component.dispatchEventImpl. Because
// KeyEvents can be delivered in response to a FOCUS_GAINED event, the
// current timestamp may be incorrect. We need to set it here so that
// KeyEventDispatchers will use the correct time.
EventQueue.setCurrentEventAndMostRecentTime(ke);
/**
* Fix for 4495473.
* This fix allows to correctly dispatch events when native
* event proxying mechanism is active.
* If it is active we should redispatch key events after
* we detected its correct target.
*/
if (KeyboardFocusManager.isProxyActive(ke)) {
Component source = (Component)ke.getSource();
Container target = source.getNativeContainer();
if (target != null) {
ComponentPeer peer = target.getPeer();
if (peer != null) {
peer.handleEvent(ke);
/**
* Fix for 4478780 - consume event after it was dispatched by peer.
*/
ke.consume();
}
}
return true;
}
java.util.List dispatchers = getKeyEventDispatchers();
if (dispatchers != null) {
for (java.util.Iterator iter = dispatchers.iterator();
iter.hasNext(); )
{
if (((KeyEventDispatcher)(iter.next())).
dispatchKeyEvent(ke))
{
return true;
}
}
}
return dispatchKeyEvent(ke);
}
/*
* @param e is a KEY_PRESSED event that can be used
* to track the next KEY_TYPED related.
*/
private void consumeNextKeyTyped(KeyEvent e) {
consumeNextKeyTyped = true;
}
private void consumeTraversalKey(KeyEvent e) {
e.consume();
consumeNextKeyTyped = (e.getID() == KeyEvent.KEY_PRESSED) &&
!e.isActionKey();
}
/*
* return true if event was consumed
*/
private boolean consumeProcessedKeyEvent(KeyEvent e) {
if ((e.getID() == KeyEvent.KEY_TYPED) && consumeNextKeyTyped) {
e.consume();
consumeNextKeyTyped = false;
return true;
}
return false;
}
/**
* This method initiates a focus traversal operation if and only if the
* KeyEvent represents a focus traversal key for the specified
* focusedComponent. It is expected that focusedComponent is the current
* focus owner, although this need not be the case. If it is not,
* focus traversal will nevertheless proceed as if focusedComponent
* were the focus owner.
*
* @param focusedComponent the Component that is the basis for a focus
* traversal operation if the specified event represents a focus
* traversal key for the Component
* @param e the event that may represent a focus traversal key
*/
public void processKeyEvent(Component focusedComponent, KeyEvent e) {
// consume processed event if needed
if (consumeProcessedKeyEvent(e)) {
return;
}
// KEY_TYPED events cannot be focus traversal keys
if (e.getID() == KeyEvent.KEY_TYPED) {
return;
}
if (focusedComponent.getFocusTraversalKeysEnabled() &&
!e.isConsumed())
{
AWTKeyStroke stroke = AWTKeyStroke.getAWTKeyStrokeForEvent(e),
oppStroke = AWTKeyStroke.getAWTKeyStroke(stroke.getKeyCode(),
stroke.getModifiers(),
!stroke.isOnKeyRelease());
Set toTest;
boolean contains, containsOpp;
toTest = focusedComponent.getFocusTraversalKeys(
KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS);
contains = toTest.contains(stroke);
containsOpp = toTest.contains(oppStroke);
if (contains || containsOpp) {
consumeTraversalKey(e);
if (contains) {
focusNextComponent(focusedComponent);
}
return;
} else if (e.getID() == KeyEvent.KEY_PRESSED) {
// Fix for 6637607: consumeNextKeyTyped should be reset.
consumeNextKeyTyped = false;
}
toTest = focusedComponent.getFocusTraversalKeys(
KeyboardFocusManager.BACKWARD_TRAVERSAL_KEYS);
contains = toTest.contains(stroke);
containsOpp = toTest.contains(oppStroke);
if (contains || containsOpp) {
consumeTraversalKey(e);
if (contains) {
focusPreviousComponent(focusedComponent);
}
return;
}
toTest = focusedComponent.getFocusTraversalKeys(
KeyboardFocusManager.UP_CYCLE_TRAVERSAL_KEYS);
contains = toTest.contains(stroke);
containsOpp = toTest.contains(oppStroke);
if (contains || containsOpp) {
consumeTraversalKey(e);
if (contains) {
upFocusCycle(focusedComponent);
}
return;
}
if (!((focusedComponent instanceof Container) &&
((Container)focusedComponent).isFocusCycleRoot())) {
return;
}
toTest = focusedComponent.getFocusTraversalKeys(
KeyboardFocusManager.DOWN_CYCLE_TRAVERSAL_KEYS);
contains = toTest.contains(stroke);
containsOpp = toTest.contains(oppStroke);
if (contains || containsOpp) {
consumeTraversalKey(e);
if (contains) {
downFocusCycle((Container)focusedComponent);
}
}
}
}
/**
* Delays dispatching of KeyEvents until the specified Component becomes
* the focus owner. KeyEvents with timestamps later than the specified
* timestamp will be enqueued until the specified Component receives a
* FOCUS_GAINED event, or the AWT cancels the delay request by invoking
* dequeueKeyEvents
or discardKeyEvents
.
*
* @param after timestamp of current event, or the current, system time if
* the current event has no timestamp, or the AWT cannot determine
* which event is currently being handled
* @param untilFocused Component which will receive a FOCUS_GAINED event
* before any pending KeyEvents
* @see #dequeueKeyEvents
* @see #discardKeyEvents
*/
protected synchronized void enqueueKeyEvents(long after,
Component untilFocused) {
if (untilFocused == null) {
return;
}
focusLog.finer("Enqueue at {0} for {1}",
after, untilFocused);
int insertionIndex = 0,
i = typeAheadMarkers.size();
ListIterator iter = typeAheadMarkers.listIterator(i);
for (; i > 0; i--) {
TypeAheadMarker marker = (TypeAheadMarker)iter.previous();
if (marker.after <= after) {
insertionIndex = i;
break;
}
}
typeAheadMarkers.add(insertionIndex,
new TypeAheadMarker(after, untilFocused));
}
/**
* Releases for normal dispatching to the current focus owner all
* KeyEvents which were enqueued because of a call to
* enqueueKeyEvents
with the same timestamp and Component.
* If the given timestamp is less than zero, the outstanding enqueue
* request for the given Component with the oldest timestamp (if
* any) should be cancelled.
*
* @param after the timestamp specified in the call to
* enqueueKeyEvents
, or any value < 0
* @param untilFocused the Component specified in the call to
* enqueueKeyEvents
* @see #enqueueKeyEvents
* @see #discardKeyEvents
*/
protected synchronized void dequeueKeyEvents(long after,
Component untilFocused) {
if (untilFocused == null) {
return;
}
focusLog.finer("Dequeue at {0} for {1}",
after, untilFocused);
TypeAheadMarker marker;
ListIterator iter = typeAheadMarkers.listIterator
((after >= 0) ? typeAheadMarkers.size() : 0);
if (after < 0) {
while (iter.hasNext()) {
marker = (TypeAheadMarker)iter.next();
if (marker.untilFocused == untilFocused)
{
iter.remove();
return;
}
}
} else {
while (iter.hasPrevious()) {
marker = (TypeAheadMarker)iter.previous();
if (marker.untilFocused == untilFocused &&
marker.after == after)
{
iter.remove();
return;
}
}
}
}
/**
* Discards all KeyEvents which were enqueued because of one or more calls
* to enqueueKeyEvents
with the specified Component, or one of
* its descendants.
*
* @param comp the Component specified in one or more calls to
* enqueueKeyEvents
, or a parent of such a Component
* @see #enqueueKeyEvents
* @see #dequeueKeyEvents
*/
protected synchronized void discardKeyEvents(Component comp) {
if (comp == null) {
return;
}
long start = -1;
for (Iterator iter = typeAheadMarkers.iterator(); iter.hasNext(); ) {
TypeAheadMarker marker = (TypeAheadMarker)iter.next();
Component toTest = marker.untilFocused;
boolean match = (toTest == comp);
while (!match && toTest != null && !(toTest instanceof Window)) {
toTest = toTest.getParent();
match = (toTest == comp);
}
if (match) {
if (start < 0) {
start = marker.after;
}
iter.remove();
} else if (start >= 0) {
purgeStampedEvents(start, marker.after);
start = -1;
}
}
purgeStampedEvents(start, -1);
}
// Notes:
// * must be called inside a synchronized block
// * if 'start' is < 0, then this function does nothing
// * if 'end' is < 0, then all KeyEvents from 'start' to the end of the
// queue will be removed
private void purgeStampedEvents(long start, long end) {
if (start < 0) {
return;
}
for (Iterator iter = enqueuedKeyEvents.iterator(); iter.hasNext(); ) {
KeyEvent ke = (KeyEvent)iter.next();
long time = ke.getWhen();
if (start < time && (end < 0 || time <= end)) {
iter.remove();
}
if (end >= 0 && time > end) {
break;
}
}
}
/**
* Focuses the Component before aComponent, typically based on a
* FocusTraversalPolicy.
*
* @param aComponent the Component that is the basis for the focus
* traversal operation
* @see FocusTraversalPolicy
* @see Component#transferFocusBackward
*/
public void focusPreviousComponent(Component aComponent) {
if (aComponent != null) {
aComponent.transferFocusBackward();
}
}
/**
* Focuses the Component after aComponent, typically based on a
* FocusTraversalPolicy.
*
* @param aComponent the Component that is the basis for the focus
* traversal operation
* @see FocusTraversalPolicy
* @see Component#transferFocus
*/
public void focusNextComponent(Component aComponent) {
if (aComponent != null) {
aComponent.transferFocus();
}
}
/**
* Moves the focus up one focus traversal cycle. Typically, the focus owner
* is set to aComponent's focus cycle root, and the current focus cycle
* root is set to the new focus owner's focus cycle root. If, however,
* aComponent's focus cycle root is a Window, then the focus owner is set
* to the focus cycle root's default Component to focus, and the current
* focus cycle root is unchanged.
*
* @param aComponent the Component that is the basis for the focus
* traversal operation
* @see Component#transferFocusUpCycle
*/
public void upFocusCycle(Component aComponent) {
if (aComponent != null) {
aComponent.transferFocusUpCycle();
}
}
/**
* Moves the focus down one focus traversal cycle. If aContainer is a focus
* cycle root, then the focus owner is set to aContainer's default
* Component to focus, and the current focus cycle root is set to
* aContainer. If aContainer is not a focus cycle root, then no focus
* traversal operation occurs.
*
* @param aContainer the Container that is the basis for the focus
* traversal operation
* @see Container#transferFocusDownCycle
*/
public void downFocusCycle(Container aContainer) {
if (aContainer != null && aContainer.isFocusCycleRoot()) {
aContainer.transferFocusDownCycle();
}
}
}