MZ@ !L!This program cannot be run in DOS mode. $Rؕ3}3}3}H̴3}H̱3}Rich3}PEL!  Q@ .rsrc@@0H ((@Xp     0H`x 8Ph !"#$(%@&Xrps        0 @ P ` p             0 @ P ` p             0 @ P ` p@|2KPM?D,|,n P~P|!X),IRlTcJj :<LocalID> Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>. <LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above "preferred" algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance. If not set to null for DMTF-defined instances, the "preferred" algorithm must be used with the <OrgID> set to CIM.UThe Caption property is a short textual description (one- line string) of the object.FThe Description property provides a textual description of the object.)A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information. Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.2.19.0ManagedElement is an abstract class that provides a common superclass (or top of the inheritance tree) for the non-association classes in the CIM Schema.:View is an abstract class that provides a common superclass for classes providing de-normalized, aggregate representations of managed resources. The definition of each sub-class will include properties propagated from the the graph of classes that are used to model the resource in the normalized view. The classes may be resource classes or associations. The definition of how a value is propagated (i.e. source class and value transformations) is required to be specified. Sub-classes may be explicitly constrained to be read only. If a sub-class is not constrained as read only, the designers are strongly encouraged to carefully consider the data synchronization and consistencies issues that may result. The ElementView association may be used to find the instances that form the normalized view of the managed resource.2.26.0A datetime value that indicates when the object was installed. Lack of a value does not indicate that the object is not installed.The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.> Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration\'s values are self-explanatory. However, a few are not and are described here in more detail. "Stressed" indicates that the element is functioning, but needs attention. Examples of "Stressed" states are overload, overheated, and so on. "Predictive Failure" indicates that an element is functioning nominally but predicting a failure in the near future. "In Service" describes an element being configured, maintained, cleaned, or otherwise administered. "No Contact" indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it. "Lost Communication" indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable. "Stopped" and "Aborted" are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated. "Dormant" indicates that the element is inactive or quiesced. "Supporting Entity in Error" indicates that this element might be "OK" but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems. "Completed" indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error). "Power Mode" indicates that the element has additional power model information contained in the Associated PowerManagementService association. OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today\'s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.UnknownOtherOKDegradedStressedPredictive FailureErrorNon-Recoverable ErrorStartingStoppingStopped In Service No ContactLost CommunicationAbortedDormantSupporting Entity in Error Completed Power Mode DMTF ReservedPAVendor ReservedAStrings describing the various OperationalStatus array values. For example, if "Stopping" is the value assigned to OperationalStatus, then this property may contain an explanation as to why an object is being stopped. Note that entries in this array are correlated with those at the same array index in OperationalStatus.A string indicating the current status of the object. Various operational and non-operational statuses are defined. This property is deprecated in lieu of OperationalStatus, which includes the same semantics in its enumeration. This change is made for 3 reasons: 1) Status is more correctly defined as an array. This definition overcomes the limitation of describing status using a single value, when it is really a multi-valued property (for example, an element might be OK AND Stopped. 2) A MaxLen of 10 is too restrictive and leads to unclear enumerated values. 3) The change to a uint16 data type was discussed when CIM V2.0 was defined. However, existing V1.0 implementations used the string property and did not want to modify their code. Therefore, Status was grandfathered into the Schema. Use of the deprecated qualifier allows the maintenance of the existing property, but also permits an improved definition using OperationalStatus.QIndicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined: "Non-recoverable Error" (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost. "Critical Failure" (25) - The element is non-functional and recovery might not be possible. "Major Failure" (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working. "Minor Failure" (15) - All functionality is available but some might be degraded. "Degraded/Warning" (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors. "OK" (5) - The element is fully functional and is operating within normal operational parameters and without error. "Unknown" (0) - The implementation cannot report on HealthState at this time. DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.Degraded/Warning Minor failure Major failureCritical failureNon-recoverable errorCommunicationStatus indicates the ability of the instrumentation to communicate with the underlying ManagedElement. CommunicationStatus consists of one of the following values: Unknown, None, Communication OK, Lost Communication, or No Contact. A Null return indicates the implementation (provider) does not implement this property. "Unknown" indicates the implementation is in general capable of returning this property, but is unable to do so at this time. "Not Available" indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property). "Communication OK " indicates communication is established with the element, but does not convey any quality of service. "No Contact" indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it. "Lost Communication" indicates that the Managed Element is known to exist and has been contacted successfully in the past, but is currently unreachable. Not AvailableCommunication OKDetailedStatus compliments PrimaryStatus with additional status detail. It consists of one of the following values: Not Available, No Additional Information, Stressed, Predictive Failure, Error, Non-Recoverable Error, SupportingEntityInError. Detailed status is used to expand upon the PrimaryStatus of the element. A Null return indicates the implementation (provider) does not implement this property. "Not Available" indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property). "No Additional Information" indicates that the element is functioning normally as indicated by PrimaryStatus = "OK". "Stressed" indicates that the element is functioning, but needs attention. Examples of "Stressed" states are overload, overheated, and so on. "Predictive Failure" indicates that an element is functioning normally but a failure is predicted in the near future. "Non-Recoverable Error " indicates that this element is in an error condition that requires human intervention. "Supporting Entity in Error" indicates that this element might be "OK" but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.No Additional Informationm OperatingStatus provides a current status value for the operational condition of the element and can be used for providing more detail with respect to the value of EnabledState. It can also provide the transitional states when an element is transitioning from one state to another, such as when an element is transitioning between EnabledState and RequestedState, as well as other transitional conditions. OperatingStatus consists of one of the following values: Unknown, Not Available, In Service, Starting, Stopping, Stopped, Aborted, Dormant, Completed, Migrating, Emmigrating, Immigrating, Snapshotting. Shutting Down, In Test A Null return indicates the implementation (provider) does not implement this property. "Unknown" indicates the implementation is in general capable of returning this property, but is unable to do so at this time. "None" indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property). "Servicing" describes an element being configured, maintained, cleaned, or otherwise administered. "Starting" describes an element being initialized. "Stopping" describes an element being brought to an orderly stop. "Stopped" and "Aborted" are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated. "Dormant" indicates that the element is inactive or quiesced. "Completed" indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded in the PrimaryStatus so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error). "Migrating" element is being moved between host elements. "Immigrating" element is being moved to new host element. "Emigrating" element is being moved away from host element. "Shutting Down" describes an element being brought to an abrupt stop. "In Test" element is performing test functions. "Transitioning" describes an element that is between states, that is, it is not fully available in either its previous state or its next state. This value should be used if other values indicating a transition to a specific state are not applicable. "In Service" describes an element that is in service and operational. Servicing Migrating Emigrating Immigrating Snapshotting Shutting DownIn Test TransitioningPrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents. PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. "Unknown" indicates the implementation is in general capable of returning this property, but is unable to do so at this time. "OK" indicates the ManagedElement is functioning normally. "Degraded" indicates the ManagedElement is functioning below normal. "Error" indicates the ManagedElement is in an Error condition.CIM_ManagedSystemElement is the base class for the System Element hierarchy. Any distinguishable component of a System is a candidate for inclusion in this class. Examples of system components include: - software components such as application servers, databases, and applications - operating system components such as files, processes, and threads - device components such as disk drives, controllers, processors, and printers - physical components such as chips and cards.2.22.0CIM_LogicalElement is a base class for all the components of a System that represent abstract system components, such as Files, Processes, or LogicalDevices.2.6.0A free-form string that represents the status of the job. The primary status is reflected in the inherited OperationalStatus property. JobStatus provides additional, implementation-specific details.The time that the Job was submitted to execute. A value of all zeroes indicates that the owning element is not capable of reporting a date and time. Therefore, the ScheduledStartTime and StartTime are reported as intervals relative to the time their values are requested.}The time that the current Job is scheduled to start. This time can be represented by the actual date and time, or an interval relative to the time that this property is requested. A value of all zeroes indicates that the Job is already executing. The property is deprecated in lieu of the more expressive scheduling properties, RunMonth, RunDay, RunDayOfWeek, and RunStartInterval.The time that the Job was actually started. This time can be represented by an actual date and time, or by an interval relative to the time that this property is requested. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the \'last\' run time can be stored in this single-valued property.PAVThe time interval that the Job has been executing or the total execution time if the Job is complete. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the \'last\' run time can be stored in this single-valued property.The number of times that the Job should be run. A value of 1 indicates that the Job is not recurring, while any non-zero value indicates a limit to the number of times that the Job will recur. Zero indicates that there is no limit to the number of times that the Job can be processed, but that it is terminated either after the UntilTime or by manual intervention. By default, a Job is processed once.eThe month during which the Job should be processed. Specify 0 for January, 1 for February, and so on.JanuaryFebruaryMarchAprilMayJuneJulyAugust SeptemberOctoberNovemberDecember#The day in the month on which the Job should be processed. There are two different interpretations for this property, depending on the value of DayOfWeek. In one case, RunDay defines the day-in-month on which the Job is processed. This interpretation is used when the DayOfWeek is 0. A positive or negative integer indicates whether the RunDay should be calculated from the beginning or end of the month. For example, 5 indicates the fifth day in the RunMonth and -1 indicates the last day in the RunMonth. When RunDayOfWeek is not 0, RunDay is the day-in-month on which the Job is processed, defined in conjunction with RunDayOfWeek. For example, if RunDay is 15 and RunDayOfWeek is Saturday, then the Job is processed on the first Saturday on or after the 15th day in the RunMonth (for example, the third Saturday in the month). If RunDay is 20 and RunDayOfWeek is -Saturday, then this indicates the first Saturday on or before the 20th day in the RunMonth. If RunDay is -1 and RunDayOfWeek is -Sunday, then this indicates the last Sunday in the RunMonth.PAA positive or negative integer used in conjunction with RunDay to indicate the day of the week on which the Job is processed. RunDayOfWeek is set to 0 to indicate an exact day of the month, such as March 1. A positive integer (representing Sunday, Monday, ..., Saturday) means that the day of week is found on or after the specified RunDay. A negative integer (representing -Sunday, -Monday, ..., -Saturday) means that the day of week is found on or BEFORE the RunDay. -Saturday-Friday -Thursday -Wednesday-Tuesday-Monday-SundayExactDayOfMonthSundayMondayTuesday WednesdayThursdayFridaySaturdayThe time interval after midnight when the Job should be processed. For example, 00000000020000.000000:000 indicates that the Job should be run on or after two o\'clock, local time or UTC time (distinguished using the LocalOrUtcTime property.This property indicates whether the times represented in the RunStartInterval and UntilTime properties represent local times or UTC times. Time values are synchronized worldwide by using the enumeration value 2, "UTC Time". Local TimeUTC TimeThe time after which the Job is invalid or should be stopped. This time can be represented by an actual date and time, or by an interval relative to the time that this property is requested. A value of all nines indicates that the Job can run indefinitely.BThe User who is to be notified upon the Job completion or failure.aThe User that submitted the Job, or the Service or method name that caused the job to be created.Indicates the urgency or importance of execution of the Job. The lower the number, the higher the priority. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the setting information that would influence the results of a job.The percentage of the job that has completed at the time that this value is requested. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the \'last\' run data can be stored in this single-valued property. Note that the value 101 is undefined and will be not be allowed in the next major revision of the specification.PercentIndicates whether or not the job should be automatically deleted upon completion. Note that the \'completion\' of a recurring job is defined by its JobRunTimes or UntilTime properties, or when the Job is terminated by manual intervention. If this property is set to false and the job completes, then the extrinsic method DeleteInstance must be used to delete the job instead of updating this property.QA vendor-specific error code. The value must be set to zero if the Job completed without error. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the \'last\' run error can be stored in this single-valued property.0A free-form string that contains the vendor error description. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the \'last\' run error can be stored in this single-valued property.Describes the recovery action to be taken for an unsuccessfully run Job. The possible values are: 0 = "Unknown", meaning it is unknown as to what recovery action to take 1 = "Other", indicating that the recovery action will be specified in the OtherRecoveryAction property 2 = "Do Not Continue", meaning stop the execution of the job and appropriately update its status 3 = "Continue With Next Job", meaning continue with the next job in the queue 4 = "Re-run Job", indicating that the job should be re-run 5 = "Run Recovery Job", meaning run the Job associated using the RecoveryJob relationship. Note that the recovery Job must already be in the queue from which it will run.Do Not ContinueContinue With Next Job Re-run JobRun Recovery JobhA string describing the recovery action when the RecoveryAction property of the instance is 1 ("Other").EKillJob is being deprecated because there is no distinction made between an orderly shutdown and an immediate kill. CIM_ConcreteJob.RequestStateChange() provides \'Terminate\' and \'Kill\' options to allow this distinction. A method to kill this job and any underlying processes, and to remove any \'dangling\' associations.Success Not SupportedTimeoutFailed Access Denied Not FoundVendor SpecificIndicates whether or not the Job should be automatically deleted upon termination. This parameter takes precedence over the property, DeleteOnCompletion.A Job is a LogicalElement that represents an executing unit of work, such as a script or a print job. A Job is distinct from a Process in that a Job can be scheduled or queued, and its execution is not limited to a single system.2.10.0Primary classification of the error. The following values are defined: 2 - Communications Error. Errors of this type are principally associated with the procedures and/or processes required to convey information from one point to another. 3 - Quality of Service Error. Errors of this type are principally associated with failures that result in reduced functionality or performance. 4 - Software Error. Error of this type are principally associated with a software or processing fault. 5 - Hardware Error. Errors of this type are principally associated with an equipment or hardware failure. 6 - Environmental Error. Errors of this type are principally associated with a failure condition relating the to facility, or other environmental considerations. 7 - Security Error. Errors of this type are associated with security violations, detection of viruses, and similar issues. 8 - Oversubscription Error. Errors of this type are principally associated with the failure to allocate sufficient resources to complete the operation. 9 - Unavailable Resource Error. Errors of this type are principally associated with the failure to access a required resource. 10 -Unsupported Operation Error. Errors of this type are principally associated with requests that are not supported.Communications ErrorPAQuality of Service ErrorSoftware ErrorHardware ErrorEnvironmental ErrorSecurity ErrorOversubscription ErrorUnavailable Resource ErrorUnsupported Operation Error[A free-form string describing the ErrorType when 1, "Other", is specified as the ErrorType.A string that uniquely identifies the entity that owns the definition of the format of the Message described in this instance. OwningEntity MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity or standards body defining the format.kAn opaque string that uniquely identifies, within the scope of the OwningEntity, the format of the Message.The formatted message. This message is constructed by combining some or all of the dynamic elements specified in the MessageArguments property with the static elements uniquely identified by the MessageID in a message registry or other catalog associated with the OwningEntity.7An array containing the dynamic content of the message.An enumerated value that describes the severity of the Indication from the notifier\'s point of view: 0 - the Perceived Severity of the indication is unknown or indeterminate. 1 - Other, by CIM convention, is used to indicate that the Severity\'s value can be found in the OtherSeverity property. 2 - Information should be used when providing an informative response. 3 - Degraded/Warning should be used when its appropriate to let the user decide if action is needed. 4 - Minor should be used to indicate action is needed, but the situation is not serious at this time. 5 - Major should be used to indicate action is needed NOW. 6 - Critical should be used to indicate action is needed NOW and the scope is broad (perhaps an imminent outage to a critical resource will result). 7 - Fatal/NonRecoverable should be used to indicate an error occurred, but it\'s too late to take remedial action. 2 and 0 - Information and Unknown (respectively) follow common usage. Literally, the Error is purely informational or its severity is simply unknown. InformationMinorMajorCriticalFatal/NonRecoverableCAn enumerated value that describes the probable cause of the error.Adapter/Card ErrorApplication Subsystem FailureBandwidth ReducedConnection Establishment ErrorCommunications Protocol Error Communications Subsystem Failure!Configuration/Customization Error Congestion Corrupt DataCPU Cycles Limit ExceededDataset/Modem ErrorDegraded SignalPADTE-DCE Interface ErrorEnclosure Door OpenEquipment MalfunctionExcessive VibrationFile Format Error Fire DetectedFlood Detected Framing Error HVAC ProblemHumidity UnacceptableI/O Device ErrorInput Device Error LAN ErrorNon-Toxic Leak DetectedLocal Node Transmission Error Loss of FrameLoss of SignalMaterial Supply ExhaustedMultiplexer Problem Out of MemoryOutput Device ErrorPerformance Degraded Power ProblemPressure Unacceptable*Processor Problem (Internal Machine Error) Pump FailureQueue Size ExceededReceive FailureReceiver FailureRemote Node Transmission ErrorResource at or Nearing CapacityResponse Time ExcessiveRetransmission Rate Excessive&Software Program Abnormally Terminated*Software Program Error (Incorrect Results)Storage Capacity ProblemTemperature UnacceptableThreshold CrossedTiming ProblemToxic Leak DetectedTransmit FailureTransmitter FailureUnderlying Resource UnavailableVersion MismatchPrevious Alert ClearedLogin Attempts FailedSoftware Virus DetectedHardware Security BreachedPADenial of Service DetectedSecurity Credential MismatchUnauthorized AccessAlarm ReceivedLoss of PointerPayload MismatchTransmission ErrorExcessive Error Rate Trace ProblemElement UnavailableElement MissingLoss of Multi FrameBroadcast Channel FailureInvalid Message ReceivedRouting FailureBackplane FailurePAIdentifier DuplicationProtection Path FailureSync Loss or MismatchTerminal ProblemReal Time Clock FailureAntenna FailureBattery Charging Failure Disk FailureFrequency Hopping FailureLoss of RedundancyPower Supply FailureSignal Quality ProblemBattery DischargingBattery FailureCommercial Power Problem Fan FailureEngine FailureSensor Failure Fuse FailureGenerator Failure Low BatteryLow Fuel Low Water Explosive Gas High Winds Ice BuildupSmokeMemory MismatchOut of CPU CyclesSoftware Environment ProblemSoftware Download FailureElement ReinitializedLogging Problems Leak DetectedProtection Mechanism FailureProtecting Resource FailureDatabase InconsistencyAuthentication FailureBreach of Confidentiality Cable TamperDelayed InformationDuplicate InformationInformation MissingInformation ModificationInformation Out of Sequence Key ExpiredNon-Repudiation FailureOut of Hours ActivityOut of ServiceProcedural ErrorUnexpected Information>A free-form string describing the probable cause of the error.OA free-form string describing recommended actions to take to resolve the error.The identifying information of the entity (i.e., the instance) generating the error. If this entity is modeled in the CIM Schema, this property contains the path of the instance encoded as a string parameter. If not modeled, the property contains some identifying string that names the entity that generated the error. The path or identifying string is formatted per the ErrorSourceFormat property.The format of the ErrorSource property is interpretable based on the value of this property. Values are defined as: 0 - Unknown. The format is unknown or not meaningfully interpretable by a CIM client application. 1 - Other. The format is defined by the value of the OtherErrorSourceFormat property.2 - CIMObjectPath. A CIM Object Path as defined in the CIM Infrastructure specification. Note: CIM 2.5 and earlier used the term object names. CIMObjectPathA string defining "Other" values for ErrorSourceFormat. This value MUST be set to a non NULL value when ErrorSourceFormat is set to a value of 1 ("Other"). For all other values of ErrorSourceFormat, the value of this string must be set to NULL.X The CIM status code that characterizes this instance. This property defines the status codes that MAY be return by a conforming CIM Server or Listener. Note that not all status codes are valid for each operation. The specification for each operation SHOULD define the status codes that may be returned by that operation. The following values for CIM status code are defined: 1 - CIM_ERR_FAILED. A general error occurred that is not covered by a more specific error code. 2 - CIM_ERR_ACCESS_DENIED. Access to a CIM resource was not available to the client. 3 - CIM_ERR_INVALID_NAMESPACE. The target namespace does not exist. 4 - CIM_ERR_INVALID_PARAMETER. One or more parameter values passed to the method were invalid. 5 - CIM_ERR_INVALID_CLASS. The specified Class does not exist. 6 - CIM_ERR_NOT_FOUND. The requested object could not be found. 7 - CIM_ERR_NOT_SUPPORTED. The requested operation is not supported. 8 - CIM_ERR_CLASS_HAS_CHILDREN. Operation cannot be carried out on this class since it has instances. 9 - CIM_ERR_CLASS_HAS_INSTANCES. Operation cannot be carried out on this class since it has instances. 10 - CIM_ERR_INVALID_SUPERCLASS. Operation cannot be carried out since the specified superclass does not exist. 11 - CIM_ERR_ALREADY_EXISTS. Operation cannot be carried out because an object already exists. 12 - CIM_ERR_NO_SUCH_PROPERTY. The specified Property does not exist. 13 - CIM_ERR_TYPE_MISMATCH. The value supplied is incompatible with the type. 14 - CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED. The query language is not recognized or supported. 15 - CIM_ERR_INVALID_QUERY. The query is not valid for the specified query language. 16 - CIM_ERR_METHOD_NOT_AVAILABLE. The extrinsic Method could not be executed. 17 - CIM_ERR_METHOD_NOT_FOUND. The specified extrinsic Method does not exist. 18 - CIM_ERR_UNEXPECTED_RESPONSE. The returned response to the asynchronous operation was not expected. 19 - CIM_ERR_INVALID_RESPONSE_DESTINATION. The specified destination for the asynchronous response is not valid. 20 - CIM_ERR_NAMESPACE_NOT_EMPTY. The specified Namespace is not empty. 21 - CIM_ERR_INVALID_ENUMERATION_CONTEXT. The enumeration context supplied is not valid. 22 - CIM_ERR_INVALID_OPERATION_TIMEOUT. The specified Namespace is not empty. 23 - CIM_ERR_PULL_HAS_BEEN_ABANDONED. The specified Namespace is not empty. 24 - CIM_ERR_PULL_CANNOT_BE_ABANDONED. The attempt to abandon a pull operation has failed. 25 - CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED. Filtered Enumeratrions are not supported. 26 - CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED. Continue on error is not supported. 27 - CIM_ERR_SERVER_LIMITS_EXCEEDED. The WBEM Server limits have been exceeded (e.g. memory, connections, ...). 28 - CIM_ERR_SERVER_IS_SHUTTING_DOWN. The WBEM Server is shutting down. 29 - CIM_ERR_QUERY_FEATURE_NOT_SUPPORTED. The specified Query Feature is not supported.CIM_ERR_FAILEDCIM_ERR_ACCESS_DENIEDCIM_ERR_INVALID_NAMESPACECIM_ERR_INVALID_PARAMETERCIM_ERR_INVALID_CLASSCIM_ERR_NOT_FOUNDCIM_ERR_NOT_SUPPORTEDCIM_ERR_CLASS_HAS_CHILDRENCIM_ERR_CLASS_HAS_INSTANCESCIM_ERR_INVALID_SUPERCLASSCIM_ERR_ALREADY_EXISTSCIM_ERR_NO_SUCH_PROPERTYCIM_ERR_TYPE_MISMATCH$CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTEDCIM_ERR_INVALID_QUERYCIM_ERR_METHOD_NOT_AVAILABLECIM_ERR_METHOD_NOT_FOUNDCIM_ERR_UNEXPECTED_RESPONSE$CIM_ERR_INVALID_RESPONSE_DESTINATIONCIM_ERR_NAMESPACE_NOT_EMPTY#CIM_ERR_INVALID_ENUMERATION_CONTEXT!CIM_ERR_INVALID_OPERATION_TIMEOUTCIM_ERR_PULL_HAS_BEEN_ABANDONED CIM_ERR_PULL_CANNOT_BE_ABANDONED*CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED+CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTEDCIM_ERR_SERVER_LIMITS_EXCEEDEDCIM_ERR_SERVER_IS_SHUTTING_DOWN#CIM_ERR_QUERY_FEATURE_NOT_SUPPORTEDA free-form string containing a human-readable description of CIMStatusCode. This description MAY extend, but MUST be consistent with, the definition of CIMStatusCode.2.22.1CIM_Error is a specialized class that contains information about the severity, cause, recommended actions and other data related to the failure of a CIM Operation. Instances of this type MAY be included as part of the response to a CIM Operation.>Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following \'preferred\' algorithm: <OrgID>:<LocalID> Where <OrgID> and <LocalID> are separated by a colon \':\', and where <OrgID> must include a copyrighted, trademarked or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID, or that is a registered ID that is assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> must not contain a colon (\':\'). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>. <LocalID> is chosen by the business entity and should not be re-used to identify different underlying (real-world) elements. If the above \'preferred\' algorithm is not used, the defining entity must assure that the resulting InstanceID is not re-used across any InstanceIDs produced by this or other providers for the NameSpace of this instance. For DMTF defined instances, the \'preferred\' algorithm must be used with the <OrgID> set to \'CIM\'.The user-friendly name for this instance of a Job. In addition, the user-friendly name can be used as a property for a search or query. (Note: Name does not have to be unique within a namespace.)JobState is an integer enumeration that indicates the operational state of a Job. It can also indicate transitions between these states, for example, \'Shutting Down\' and \'Starting\'. Following is a brief description of the states: New (2) indicates that the job has never been started. Starting (3) indicates that the job is moving from the \'New\', \'Suspended\', or \'Service\' states into the \'Running\' state. Running (4) indicates that the Job is running. Suspended (5) indicates that the Job is stopped, but can be restarted in a seamless manner. Shutting Down (6) indicates that the job is moving to a \'Completed\', \'Terminated\', or \'Killed\' state. Completed (7) indicates that the job has completed normally. Terminated (8) indicates that the job has been stopped by a \'Terminate\' state change request. The job and all its underlying processes are ended and can be restarted (this is job-specific) only as a new job. Killed (9) indicates that the job has been stopped by a \'Kill\' state change request. Underlying processes might have been left running, and cleanup might be required to free up resources. Exception (10) indicates that the Job is in an abnormal state that might be indicative of an error condition. Actual status might be displayed though job-specific objects. Service (11) indicates that the Job is in a vendor-specific state that supports problem discovery, or resolution, or both. Query pending (12) waiting for a client to resolve a queryNewRunning Suspended TerminatedKilled ExceptionService Query PendingThe date or time when the state of the Job last changed. If the state of the Job has not changed and this property is populated, then it must be set to a 0 interval value. If a state change was requested, but rejected or not yet processed, the property must not be updated.The amount of time that the Job is retained after it has finished executing, either succeeding or failing in that execution. The job must remain in existence for some period of time regardless of the value of the DeleteOnCompletion property. The default is five minutes.DRequests that the state of the job be changed to the value specified in the RequestedState parameter. Invoking the RequestStateChange method multiple times could result in earlier requests being overwritten or lost. If 0 is returned, then the task completed successfully. Any other return code indicates an error condition.Completed with No ErrorUnknown/Unspecified Error&Can NOT complete within Timeout PeriodInvalid ParameterIn Use.Method Parameters Checked - Transition StartedInvalid State Transition&Use of Timeout Parameter Not SupportedBusyMethod ReservedRequestStateChange changes the state of a job. The possible values are as follows: Start (2) changes the state to \'Running\'. Suspend (3) stops the job temporarily. The intention is to subsequently restart the job with \'Start\'. It might be possible to enter the \'Service\' state while suspended. (This is job-specific.) Terminate (4) stops the job cleanly, saving data, preserving the state, and shutting down all underlying processes in an orderly manner. Kill (5) terminates the job immediately with no requirement to save data or preserve the state. Service (6) puts the job into a vendor-specific service state. It might be possible to restart the job.StartSuspend TerminateKillA timeout period that specifies the maximum amount of time that the client expects the transition to the new state to take. The interval format must be used to specify the TimeoutPeriod. A value of 0 or a null parameter indicates that the client has no time requirements for the transition. If this property does not contain 0 or null and the implementation does not support this parameter, a return code of \'Use Of Timeout Parameter Not Supported\' must be returned.When the job is executing or has terminated without error, then this method returns no CIM_Error instance. However, if the job has failed because of some internal problem or because the job has been terminated by a client, then a CIM_Error instance is returned.Unspecified ErrorIf the OperationalStatus on the Job is not "OK", then this method will return a CIM Error instance. Otherwise, when the Job is "OK", null is returned.yA concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.InstanceID is the property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace.This property corresponds to the EnabledState property of the logical computer system represented by CIM_ComputerSystem. See CIM_EnabledLogicalElement.EnabledState for details on EnabledState.EnabledDisabledNot ApplicableEnabled but OfflineDeferredQuiesceThis property corresponds to the RequestedState property of the logical computer system represented by CIM_ComputerSystem. See CIM_EnabledLogicalElement.RequestedState for details on RequestedState. Shut Down No ChangeOfflineTestRebootResetThis property corresponds to the OperationalStatus property of the logical computer system represented by CIM_ComputerSystem. See CIM_ManagedSystemElement.OperationalStatus Description for details. RelocatingThis property corresponds to the HealthState property of the logical computer system represented by CIM_ComputerSystem. See CIM_ManagedSystemElement.HealthState for details.This property indicates the availability of the FRU Information on this physical computer system. See CIM_PhysicalAssetCapabilities.FRUInfoSupported for details.ZThis property corresponds to CIM_PhysicalFrame.Tag. See CIM_PhysicalFrame.Tag for details.PAlThis property corresponds to CIM_PhysicalFrame.Manufacturer. See CIM_PhysicalFrame.Manufacturer for details.^This property corresponds to CIM_PhysicalFrame.Model. See CIM_PhysicalFrame.Model for details.ZThis property corresponds to CIM_PhysicalFrame.SKU. See CIM_PhysicalFrame.SKU for details.lThis property corresponds to CIM_PhysicalFrame.SerialNumber. See CIM_PhysicalFrame.SerialNumber for details.bThis property corresponds to CIM_PhysicalFrame.Version. See CIM_PhysicalFrame.Version for details.hThis property corresponds to CIM_PhysicalFrame.PartNumber. See CIM_PhysicalFrame.PartNumber for details.This property corresponds to PowerUtilizationModesSupported property of CIM_PowerUtilizationManagementCapabilities. See CIM_PowerUtilizationManagementCapabilities.PowerUtilizationModesSupported for details.DynamicStaticThis property corresponds to the PowerUtilizationMode of the CIM_PowerUtilizationManagementService. See CIM_PowerUtilizationManagementService.PowerUtilizationMode for details.NonexThis property corresponds to CIM_PowerAllocationSettingData.Limit. See CIM_PowerAllocationSettingData.Limit for details.qUser-friendly names of the numeric sensors on the computer system. See CIM_NumericSensor.ElementName for details.JStates of numeric sensors. See CIM_NumericSensor.EnabledState for details.PHealth states of numeric sensors. See CIM_NumericSensor.HealthState for details.RCurrent states of numeric sensors. See CIM_NumericSensor.CurrentState for details.PAUPrimary statuses of numeric sensors. See CIM_NumericSensor.PrimaryStatus for details.fBase units of the values returned by the numeric sensors. See CIM_NumericSensor.BaseUnits for details. Degrees C Degrees F Degrees KVoltsAmpsWattsJoulesCoulombsVANitsLumensLuxCandelaskPaPSINewtonsCFMRPMHertzSecondsMinutesHoursDaysWeeksMilsInchesFeet Cubic Inches Cubic FeetMetersPACubic Centimeters Cubic MetersLiters Fluid OuncesRadians Steradians RevolutionsCycles GravitiesOuncesPounds Foot-Pounds Ounce-InchesGaussGilbertsHenriesPAFaradsOhmsSiemensMoles BecquerelsPPM (parts/million)DecibelsDbADbCGraysSievertsColor Temperature Degrees KBitsBytes Words (data) DoubleWordsPA QuadWords PercentagePascalszUnit modifiers for the values returned by the numeric sensors. See CIM_NumericSensor.UnitModifier description for details.,See CIM_NumericSensor.RateUnits for details.Per MicroSecondPer MilliSecond Per Second Per MinutePer HourPer DayPer Week Per MonthPer Year1See CIM_NumericSensor.CurrentReading for details.-See CIM_NumericSensor.SensorType for details. TemperatureVoltageCurrent TachometerCounterSwitchLockHumiditySmoke DetectionPresenceAir FlowPower ConsumptionPower ProductionPressure=See CIM_NumericSensor.OtherSensorTypeDescription for details.<See CIM_NumericSensor.UpperThresholdNonCritical for details.PAESee CIM_NumericSensor.UpperThresholdCritical description for details.6See CIM_NumericSensor.UpperThresholdFatal for details.This property represents the identifiers for the underlying logs on this physical computer system. See CIM_RecordLog.InstanceID for details.1See CIM_RecordLog.MaxNumberOfRecords for details.5See CIM_RecordLog.CurrentNumberOfRecords for details..See CIM_RecordLog.OverWritePolicy for details.Wraps When FullNever Overwrites'See CIM_RecordLog.LogState for details.NormalErasingStrings identifying the boot sources on this physical computer system. See CIM_BootSourceSetting.StructuredBootString description for details.BAn array of elements identifying the boot order of the persistent boot configuration that shall be used during the next boot of the computer system, unless the OneTimeBootSource for the next boot is specified. The value of each element in this array is an index referencing an element in the array of StructuredBootString.This property identifies the boot source that is used for the next one-time boot. The value of this property is an index referencing an element in the array of StructuredBootString.SThis property identifies the number of processors on this physical computer system.ASee CIM_ProcessorCapabilities.NumberOfProcessorCores for details.PACSee CIM_ProcessorCapabilities.NumberOfProcessorThreads for details.%See CIM_Processor.Family for details.,See CIM_Processor.MaxClockSpeed for details.%See CIM_Memory.BlockSize for details.*See CIM_Memory.NumberOfBlocks for details.,See CIM_Memory.ConsumableBlocks for details.CThe major number component of the current BIOS version information.CThe minor number component of the current BIOS version information.FThe revision number component of the current BIOS version information.CThe build number component of the current BIOS version information.{The major number component of the version information for the current management firmware on this physical computer system.{The minor number component of the version information for the current management firmware on this physical computer system.~The revision number component of the version information for the current management firmware on this physical computer system.{The build number component of the version information for the current management firmware on this physical computer system.\The user-friendly name for the current management firmware on this physical computer system.XThe version string for the current management firmware on this physical computer system.PAType information of the current or last running operating system on this physical computer system. See CIM_OperatingSystem.OSType for details.Version information of the current or last running operating system on this physical computer system. See CIM_OperatingSystem.Version for details.^EnabledState of the current or last running operating system on this physcial computer system..The BIOS version information in string format.-See CIM_ComputerSystem.Dedicated for details. Not DedicatedStorageRouterLayer 3 SwitchCentral Office SwitchHub Access ServerFirewallPrintI/O Web CachingPA Management Block Server File ServerMobile User DeviceRepeaterBridge/ExtenderGatewayStorage Virtualizer Media Library ExtenderNodeNAS HeadSelf-contained NASUPSIP PhoneManagement ControllerChassis ManagerHost-based RAID controllerStorage Device EnclosureDesktopLaptopVirtual Tape LibraryVirtual Library SystemNetwork PC/Thin Client FC SwitchEthernet Switch3See CIM_System.IdentifyingDescriptions for details.>See CIM_ComputerSystem.OtherDedicatedDescriptions for details.0See CIM_System.OtherIdentifyingInfo for details.0See CIM_Processor.CurrentClockSpeed for details.)See CIM_Sensor.SensorContext for details.<See CIM_NumericSensor.LowerThresholdNonCritical for details.ESee CIM_NumericSensor.LowerThresholdCritical description for details.BSee CIM_NumericSensor.LowerThresholdFatal description for details.An extrinsic method for changing the state of this physical computer system. Requests that the state of the element be changed to the value specified in the RequestedState parameter. When the requested state change takes place, the EnabledState and RequestedState will be the same. Invoking the RequestStateChange method multiple times could result in earlier requests being overwritten or lost. A return code of 0 shall indicate the state change was successfully initiated. A return code of 1 shall indicate that the method is not supported. A return code of 2 shall indicate that the method failed. A return code of 4096 shall indicate the state change was successfully initiated, a ConcreteJob has been created, and its reference returned in the output parameter Job. Job StartedGSee CIM_ComputerSystem.RequestedStateChange.RequestedState for details.DefertMay contain a reference to the ConcreteJob created to track the state transition initiated by the method invocation.1See CIM_ComputerSystem.TimeoutPeriod for details.An extrinsic method for clearing a log on this physical computer system. Requests that the Log be cleared of all entries. The return value shall be 0 if the request was successfully executed, 1 if the request is not supported, and 2 if an error occurred. A return code of 4096 shall indicate the request to clear log was successfully initiated, a ConcreteJob has been created, and its reference returned in the output parameter Job.5Idenfier for the log that is requested to be cleared.An extrinsic method for installing software on this physical computer system. If 0 is returned, the function completed successfully and no ConcreteJob instance was required. The return value shall be 1 if the request is not supported, and 2 if an error occurred. If 4096 is returned, a ConcreteJob will be started to to perform the install. The Job\'s reference will be returned in the output parameter Job.4Reference to the job (may be null if job completed).5See CIM_SoftwareIdentity.Classifications for details.Firmware BIOS/FCodeSoftware BundleManagement FirmwarePACSee CIM_SoftwareInstallationService.InstallFromURI.URI for details.NSee CIM_SoftwareInstallationService.InstallFromURI.InstallOptions for details.Defer target/system resetForce installationInstallUpdateRepairPassword UninstallLog SilentModeAdministrativeModeScheduleInstallAtTSee CIM_SoftwareInstallationService.InstallFromURI.InstallOptionsValues for details.This method is used to change the order of boot sources for the persistent boot configuration specified by the property CIM_PhysicalComputerSystemView.PersistentBootConfigOrder.CAn ordered array of strings representing the order of boot sources.yReference to the job spawned if the operation continues after the method returns. (May be null if the task is completed).^This method is used to set the one time boot source for the next boot on this computer system.4A string representing the boot source for next boot.?This class defines a view class for a physical computer system.2.35.0Name of the target PCSV deviceThe operation options for this call must contain an option with the following name: %1. The %1 operation option must be of type: %2; and in the following format: username:password.An error %1!X! occured while parsing the credentials. The %2 operation option must be in the following format: username:password.The operation options for this call must contain an option with the following name: %1. The %1 operation option must be of type: %2.+The %1 operation option must be of type %2.eThe requested management protocol type is not supported. Supported types are WSMAN (1) and IPMI (2). wThe requested authentication type is not supported. The supported authentication types are: Default, Digest, and Basic.sThe requested power state is not supported. The supported power states are: Enabled(2), Disabled(3), and Reset(11).The requested boot source is not supported on this device. The requested boot source must be one of the values in the StructuredBootString array.The device attempted to start a session using an unsupported authentication algorithm. The supported Authenticaiton algorithms are HMAC_SHA1 and NONE.The device attempted to start a session using an unsupported integrity algorithm. The supported integrity algorithms are HMAC_SHA1_96 and NONE.The device attempted to start a session using an unsupported confidentiality algorithm. The supported confidentiality algorithms are AES_CBC_128 and NONE.rThe device does not implement any of the supported base profiles. The supported base profiles are: %1, %2, and %3.BAn unexpected %1 error %2!X! occured while processing the request.4The response received from the device was not valid.nThe operation did not complete successfully. The response contained the following IPMI Completion Code: %1!x!.PA[Cannot connect to device using the given credentials. Verify the credentials and try again.;The device did not respond in the specified timeout period.bThe DMTF %1 profile is not implemented on the device or it is not implemented in the standard way.Restarting device using %1QThe operation failed. The device returned the following RMCP+ status code: %1!x!.Starting device using %1Stopping device using %1'Set one time boot source to %2 using %1(Getting information from device using %1nSome capabilities or properties will not be available since the device does not implement the DMTF %1 Profile.PP4T  Information HMicrosoft-Windows-DAL-Provider lThe Unencrypted request data for IPMI request %1 hThe Decrypted response data for IPMI request %1 LStarts enumeration of PCSVDevice HStops enumeration of PCSVDevice TStarts getting instance of PCSVDevice TStops getting instance of PCSVDevice <Start RequestStateChange <Stops RequestStateChange @Starts SetOneTimeBootSource @Stops SetOneTimeBootSource HResult of PCSVDevice operation HInformation on IPMI Sent Data PInformation on IPMI Received Data 8Get operations options 4VS_VERSION_INFO@%@%?"StringFileInfo040904B0LCompanyNameMicrosoft Corporationh FileDescriptionPCSV Proxy Provider for devicesr)FileVersion6.3.9600.16384 (winblue_rtm.130821-1623)>InternalNamepcsvDevice.dll.LegalCopyright Microsoft Corporation. All rights reserved.NOriginalFilenamepcsvDevice.dll.muij%ProductNameMicrosoft Windows Operating SystemBProductVersion6.3.9600.16384DVarFileInfo$Translation PADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADDINGXXPADDINGPADD